the Monte Carlo ntial, Eq. (2.4)].
$T\left({ }^{\circ} \mathrm{K}\right)$
11900
9360
$+330$
3120
2390
1401
760
569
re at the given vas then used 2q. (2.1a) was -of-state quanation.
it temperature isotherms. The . discussed in $T / \epsilon^{*}=2.74$, isotherms also. oints on these in Figs. 1(a) only a disconable transition. rm was then t temperature.
e Carlo points interpolation.) niot point was om the LJD ood agreement
luced thermopair potential from second-

33 A ,
ven in Table I n in Fig. 2(b) imental solidthe empirical appears that lid region. To ci of Hugoniot (b). Although tion is poorly

Chem. Phys. 23, ndon) A225, 393
determined by the Monte Carlo results, it appears that the lower portion of the Hugoniot curve may lie in the solid region. As pointed out in reference 3, the apparent coexistence point on the lowesttemperature Monte Carlo isotherm is at a lower pressure than that predicted by the extrapolation of the experimental results. Thus the coexistence curve predicted by the Monte Carlo results probably lies somewhat to the right of the dashed curve of Fig. 2(b) and intersects the lower portion of the Hugoniot curve.

Table II. Shock Hugoniots calculated with the LJD equation of state.

$P(k b)$	Lennard-Jones potential [Eq. (2.4)]		Exp-six potential [Eq. (3.1)]		Exp-six potential [Eq. (3.2)]	
	V / V_{0}	$T\left({ }^{\circ} \mathrm{K}\right)$	V / V_{0}	$T\left({ }^{\circ} \mathrm{K}\right)$	V / V_{0}	$T\left({ }^{\circ} \mathrm{K}\right)$
600	0.5137	21230	0.4698	20900	0.4121	22863
500	0.5205	17210	0.4791	16920	0.4228	18420
400	0.5292	13310	0.4907	13053	0.4359	14195
300	0.5409	9555	0.5062	9335	0.4528	10177
250	0.5487	7743	0.5164	7547	0.4638	8244
200	0.5587	5988	0.5292	5819	0.4775	6370
150	0.5722	4306	0.5464	4167	0.4957	4570
100	0.5927	2720	0.5720	2616	0.5228	2872
75	0.6083	1976	0.5912	1893	0.5430	2077
50	0.6322	1280	0.6199	1221	0.5732	1334
25	0.6778	652.5	0.6730	620.2	0.6291	668.6
20	0.6938	538.7	0.6911	512.6	0.6482	548.9
15	0.7151	430.0	0.7150	410.3	0.6734	435.4
10	0.7462	327.0	0.7494	314.2	0.7096	328.8
5	0.8003	229.4	0.8082	223.8	0.7716	229.4

The same set of isotherms and the shock Hugoniot were also calculated from the LJD cell theory. ${ }^{6}$ These calculations were done on the IBM 704. The Hugoniot curve was obtained by the iterative solution of Eq. (2.1), with the equation-of-state points calculated as needed. The results are given in Table II and are compared with the Monte Carlo results in Figs. 1 and 2.
Although the isotherms do not agree too well, particularly on the fluid side of the phase transition (which is of course not predicted by the cell theory), the two Hugoniot curves are quite close. Of course the isotherms shown give only the difference between the E or $P V$ and the contributions of the regular lattice configuration, which is the same in both calculations. Examination of the results, shows, however, that the lattice values are less than half of the total above about 50 kb on the Hugoniot, so that the fact that the lattice contributions are the same cannot alone account for the agreement. It appears that the agreement is due mainly to the cancellation of the differences in $P V$ and E when they are subtracted in the Hugoniot equation, plus

Frg. 3. Intermolecular potentials used in the calculations. (1A) Lennard-Jones 6-12, constants from second virial coefficient data [Eq. (2.4)] $\epsilon^{*} / k=119.3^{\circ} \mathrm{K}, r^{*}=3.833$. (1B) Exp-six, constants from second virial coefficient and crystal data [Eq. (3.1)] $\alpha=14, \epsilon^{*} / k=123.2{ }^{\circ} \mathrm{K}, r^{*}=3.866 \mathrm{~A} .2$. Exp-six, constants from molecular scattering data for $2.2 \mathrm{~A}<r<3.4 \mathrm{~A}$ [Eq. (3.2)] $\alpha=12, \epsilon^{*} / k=116, r^{*}=3.87 \mathrm{~A}$. The range of distances covered by the scattering data is indicated by the vertical bars. To the right of the minimum, the attractive portion, not shown, lies between curves 1 A and 1B.

Fig. 4. Shock Hugoniots for liquid argon calculated with different pair potentials: Curves 1A, 1B, and 2 correspond to the potentials of Fig. 3. Curves 3 and 4 illustrate the effect of varying the potential parameters: $3 . \alpha=12, \epsilon^{*} / k=$ $123.2, r^{*}=3.866$. 4. $\alpha=14, \epsilon^{*} / k=123.2, r^{*}=4.18 \mathrm{~A}$. Curve 4 also illustrates the change in r^{*} required to reproduce the available experimental data.
the fact that a part of the Hugoniot curve corresponds to a region in which the LJD and Monte Carlo isotherms are crossing.

3. EFFECT OF THE PAIR POTENTIAL

In addition to the Lennard-Jones form of the pair potential used above, the exp-six form has also been fit to second virial coefficient and crystal data, with the result ${ }^{12}$

$$
\begin{equation*}
u(r)=\frac{\epsilon^{*}}{1-6 / \alpha}\left[\frac{6}{\alpha} e^{\alpha\left(1-r / r^{*}\right)}-\left(\frac{r}{r^{*}}\right)^{-6}\right] \tag{3.1a}
\end{equation*}
$$

[^0] (1954).

[^0]: ${ }^{12}$ E. W. Mason and W. E. Rice, J. Chem. Phys. 22, 843

